Using stacking to average Bayesian predictive distributions
نویسندگان
چکیده
Abstract. Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility function to any proper scoring rule and use Pareto smoothed importance sampling to efficiently compute the required leave-one-out posterior distributions. We compare stacking of predictive distributions to several alternatives: stacking of means, Bayesian model averaging (BMA), Pseudo-BMA using AIC-type weighting, and a variant of Pseudo-BMA that is stabilized using the Bayesian bootstrap. Based on simulations and real-data applications, we recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA as an approximate alternative when computation cost is an issue.
منابع مشابه
Using stacking to average Bayesian predictive distributions Using stacking to average Bayesian predictive distributions
Abstract The widely recommended procedure of Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions, extending the utility function to any proper scoring rule, using Pareto smooth...
متن کاملBayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions
The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...
متن کاملNon-linear Bayesian prediction of generalized order statistics for liftime models
In this paper, we obtain Bayesian prediction intervals as well as Bayes predictive estimators under square error loss for generalized order statistics when the distribution of the underlying population belongs to a family which includes several important distributions.
متن کاملA Moving Avarage Variation Control Chart based on Bayesian Predictive Density
Recently several control charts have been introduced in the statistical process control literature which are based on the idea of Bayesian Predictive Density (BPD). Among these charts is the variation control chart which we refer to it as VBPD chart. In this paper we add the idea of Moving Average to VBPD chart and introduce a new variation control chart which has all advantages of the ...
متن کاملBayesian prediction of rotational torque to operate horizontal drilling
Horizontal directional drilling is usually used in drilling engineering. In a variety of conditions, it is necessary to predict the torque required for performing the drilling operation. Nevertheless, there is presently not a convenient method available to accomplish this task. In order to overcome this difficulty, the current work aims at predicting the required rotational torque (RT) to opera...
متن کامل